If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x+11=0
a = 2; b = 16; c = +11;
Δ = b2-4ac
Δ = 162-4·2·11
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{42}}{2*2}=\frac{-16-2\sqrt{42}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{42}}{2*2}=\frac{-16+2\sqrt{42}}{4} $
| n-3n=314-4n | | 27-3x-4x=92 | | 32-v=174 | | -2(u+-18)=20 | | 14/15=x/15 | | 6x+×+×+×+2×+×=12 | | x+x(x+30)+2x=180 | | 18x-6=4x+36 | | 82+8x+4=158 | | -32=-3+10x-6 | | -7(-4v+2)-4v=6(v-1)-5 | | 1/5(40-8x)=19x+2-5x | | .50x+20=32 | | v/5=-54 | | 12x-8=4(3x+2) | | 28-5g=37 | | -13=k-15 | | 48+7x-1=131 | | m=9=28 | | (8x-27)+(6x+39)=180 | | 9x+60-10x+2=0 | | 5x−10=3x2 | | 30+4x-30=40x | | x^2=16/196 | | (1,5)m=3 | | -7=3+c | | 3/2(x-8)=-11 | | 1,5;m=3 | | 10a+4=6a-8 | | 6=2(h-12) | | 2/8x-6=14 | | 13c=-6.5 |